Cleaning seed collections for long-term conservation

Janet Terry and Vanessa Sutcliffe, Royal Botanic Gardens, Kew

Seeds are cleaned to decrease bulk, reduce disease risk, and facilitate future use. Cleaning long-term conservation collections without causing physical damage and reducing seed viability requires care and expertise. This information sheet outlines the seed cleaning techniques used most frequently by the Millennium Seed Bank (MSB).

Seed diversity

Seeds are dispersed from the parent plant in a variety of ways and forms. Many are released within winged fruits or are blown great distances by feathery ‘parachutes’. Others are contained within brightly-coloured fleshy fruits, designed to be eaten by birds. Some seeds develop inside hooked fruits that attach to the fur of passing animals. This diversity of dispersal mechanisms poses challenges when cleaning seeds.

Seed cleaning principles

Seed cleaning aims to process field-harvested material to a collection of clean, viable plant propagules (seeds or fruits) without incurring damage or loss. Some seeds, for example those from species with dry capsules, are collected directly and require only minimum cleaning. More often, the fruit is collected and seeds need to be extracted.

Cleaning involves:
- removing undesirable bulk (twigs, leaves, etc.) and debris;
- extracting seeds from fruits;
- removing empty and/or insect infested seeds, seeds of other species, insects or inert matter.

Seed cleaning of conservation collections is best done by hand because:
- automated processes produce unacceptable levels of physical damage to seeds;
- automated processes, generally developed for crop seeds, may not be sufficiently flexible to deal with the diversity of seeds and fruits produced by wild species.

Ideally, dry collections in a dry room or a desiccator for several weeks before cleaning, to increase the ease of processing and reduce the risk of physical damage to the seeds. Wash fleshy fruits in a sieve to remove fruit pulp, dry slowly under ambient conditions for two weeks (see Technical Information Sheet_04) and then process as dry seeds.

Examine fruit and seed structures to highlight potential problems (and to give important clues to germination requirements). Use different cleaning techniques, according to the type of seed or fruit (see flowchart overleaf). First, remove as much bulk material as possible by hand. If live insects are present, dry the collection to below 20% equilibrium relative humidity (eRH) then place at -20°C for at least one week.

For some collections, it may be difficult to ascertain the best method of cleaning. In such cases, it is best to refer to methods used for similar species. It may not always be easy or cost-effective to remove seeds from fruits. Always test new approaches on a small sample first, to avoid damaging the entire collection.

Pursue cleaning to a reasonable end point, taking care to avoid damaging the entire collection. Physical extraction of seeds from covering structures may be so time-consuming that it becomes more cost effective to store a bulkier collection.

Equipment and materials

- Stainless steel sieves with a range of mesh sizes
- Aspirator
- Rubber or wooden bung
- Wire brush
- Small bristle brushes
- Forceps
- Scalpel
- Microscope
- Latex safety gloves
- Lab. coat
- Dust mask
- Leather gloves
- Large trays
- Paper packets and fasteners for cleaned material
- Vacuum cleaner

Below: Pachycereus seeds, removed from fruits by hand and sieved to separate debris

Left: Sophora seeds being cleaned by hand
Once all possible debris and empty/infested seed has been removed, check the final seed fraction. If there is still a significant quantity of debris or empty/infested seeds present, it may be necessary to sort by hand.

Hand-sorting
Collections containing a large quantity of infested seeds, which cannot be separated using an aspirator, may be sorted visually. Only use hand-sorting if it can be completed in a reasonable amount of time.

- Sort large seeds on a smooth flat surface, separating good seeds from bad by eye.
- Use a magnifying glass to sort small-seeded collections.

Using an aspirator
Aspirators remove lighter material from a collection such as chaff and empty seeds. Use after sieving or as a procedure on its own. Use reverse aspiration to remove light seed (e.g. Betula) from heavy debris.

- Once all possible debris and empty/infested seed has been removed, check the final seed fraction. If there is still a significant quantity of debris or empty/infested seeds present, it may be necessary to sort by hand.

Hand-sorting
Collections containing a large quantity of infested seeds, which cannot be separated using an aspirator, may be sorted visually. Only use hand-sorting if it can be completed in a reasonable amount of time.

- Sort large seeds on a smooth flat surface, separating good seeds from bad by eye.
- Use a magnifying glass to sort small-seeded collections.

Cut-test
Cut-testing is used to assess the quality of collections after cleaning. It provides an indication of the proportion of empty, poorly developed or insect-infested seeds.

- Take a representative sub-sample of seeds:
 - Collection size
 - Cut-test sample
 - > 5,000 seeds: 50 seeds
 - 1,000 - 5,000 seeds: 20 seeds
 - 500 - 1,000 seeds: 10 seeds
 - < 500 seeds: Do not cut-test

- Dissect seeds under a microscope using a scalpel.
- Record the numbers of full, empty and infested seeds, noting anything else you may find of interest, such as the size and positioning of the embryo, and any indication that the seed may not be fully mature. Insect damage often appears as a tunnel of increasing size, usually with a cavity where the larva is found. An exit hole may also be apparent.
- If the cut-test reveals an easily removable fraction of empty or damaged seeds, re-clean the collection.

Sieving
This is the most commonly used cleaning method. Use a selection of sieves, depending on the seed/fruit size and the materials that are to be removed. The seed/fruit should be able to fall through the sieve without damage, but the mesh should not be so large that unwanted material also passes through. The last sieve should be small enough to retain the seed and let dust through. If the collection is large, work out the best procedure on a small sample first.

- Place a small quantity of material into the top sieve (the largest of the mesh sizes chosen) and gently crush/grind with a rubber bung if necessary, until most of the seeds have passed through the sieve. Use a mechanical sieve shaker or gently rub with fingers (using rubber gloves) if a rubber bung might cause damage, for example with some species of Compositae.
- Check the fraction remaining in the top sieve for any trace of seed. Use a binocular microscope if necessary. If no seed is found, discard the material.
- Look at the material in the next sieve to see if any seeds have been damaged by the process. If damage is found, select another cleaning method.
- Repeat for each sieve, working down the mesh sizes.
- Ideally, seed will remain in a sieve with material of a similar size, but of a different weight. This fraction can then be separated by aspiration.

Cut-testing is used to assess the quality of collections after cleaning. It provides an indication of the proportion of empty, poorly developed or insect-infested seeds.

- Take a representative sub-sample of seeds:
 - Collection size
 - Cut-test sample
 - > 5,000 seeds: 50 seeds
 - 1,000 - 5,000 seeds: 20 seeds
 - 500 - 1,000 seeds: 10 seeds
 - < 500 seeds: Do not cut-test

- Dissect seeds under a microscope using a scalpel.
- Record the numbers of full, empty and infested seeds, noting anything else you may find of interest, such as the size and positioning of the embryo, and any indication that the seed may not be fully mature. Insect damage often appears as a tunnel of increasing size, usually with a cavity where the larva is found. An exit hole may also be apparent.
- If the cut-test reveals an easily removable fraction of empty or damaged seeds, re-clean the collection.
Seed cleaning process chart for dried material

START

Have you got a large collection?

Yes

Sieve the collection

No

Tip out the whole collection

Yes

Can the collection be cleaned further using an aspirator?

Yes

A

Does this genus/species been cleaned previously?

Yes

Has the sample to a satisfactory point?

Yes

Record reading on aspirator

No

Continue processing

Satisfactory point?

Yes

Have you processed the sample?

No

Remove larger pieces of plant debris.

No

Assess what you have

• Is it a collection of seeds or fruits?
• Can you remove the seeds/fruits from their covering structures?
• Are the seeds/fruits hard or soft?
• Will the seeds/fruits be easily damaged?
• Can you clean this collection?
• Has this genus/species been cleaned previously?

Yes

Cut test or X-ray a sample (if more than 500 seeds in collection)

Keep the cleaned sample for future reference

No

Process the remainder of the collection using the best method from point A

Is it an efficient and effective use of time to clean the remainder of the collection?

How long did the cleaning process take, i.e. how long did it take to get from point A to here?

Yes

Has the sample to a satisfactory point?

No

Remove larger pieces of plant debris.

NO

Remove larger pieces of plant debris.

START

Have you processed the sample to a satisfactory point?

Yes

Record reading on aspirator

No

Continue processing

How long did the cleaning process take, i.e. how long did it take to get from point A to here?

Satisfactory point?

Have you processed the sample?

Yes

Remove larger pieces of plant debris.

No

Assess what you have

• Is it a collection of seeds or fruits?
• Can you remove the seeds/fruits from their covering structures?
• Are the seeds/fruits hard or soft?
• Will the seeds/fruits be easily damaged?
• Can you clean this collection?
• Has this genus/species been cleaned previously?

Yes

Cut test or X-ray a sample (if more than 500 seeds in collection)

Keep the cleaned sample for future reference

No

Process the remainder of the collection using the best method from point A

Is it an efficient and effective use of time to clean the remainder of the collection?

How long did the cleaning process take, i.e. how long did it take to get from point A to here?

Yes

Has the sample to a satisfactory point?

No

Remove larger pieces of plant debris.

NO

Remove larger pieces of plant debris.

START

Have you got a large collection?

Sieve the collection to separate debris, using a rubber bung to break up fruits

Tip out the whole collection

Yes

Can the collection be cleaned further using an aspirator?

Yes

A

Does this genus/species been cleaned previously?

Yes

Has the sample to a satisfactory point?

Yes

Record reading on aspirator

No

Continue processing

Satisfactory point?

Yes

Have you processed the sample?

No

Remove larger pieces of plant debris.

NO

Remove larger pieces of plant debris.

START

Have you got a large collection?

Sieve the collection to separate debris, using a rubber bung to break up fruits

Tip out the whole collection

Yes

Can the collection be cleaned further using an aspirator?

Yes

A

Does this genus/species been cleaned previously?

Yes

Has the sample to a satisfactory point?

Yes

Record reading on aspirator

No

Continue processing

Satisfactory point?

Yes

Have you processed the sample?

No

Remove larger pieces of plant debris.

NO

Remove larger pieces of plant debris.

START

Have you got a large collection?
Equipment specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Model/Product</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve set</td>
<td>• 5.6mm, 3.35mm, 2.36mm, 1.4mm, and 600µm sieves</td>
<td>Fisher Scientific Ltd [www.fisher.co.uk]</td>
</tr>
<tr>
<td></td>
<td>• Base pan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Brush</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rubber bung</td>
<td></td>
</tr>
<tr>
<td>Dust-control cabinet with modified lower front panel and light</td>
<td>Bigneat model XIT Plus 800</td>
<td>Bigneat Ltd [www.bigneat.com]</td>
</tr>
<tr>
<td>Agriculex seed aspirator with acrylic catcher</td>
<td>Agriculex CB1</td>
<td>Agriculex Inc. [www.agriculex.guelph.org]</td>
</tr>
<tr>
<td>Zig-Zag seed aspirator</td>
<td>Zig-Zag type 1</td>
<td>Selecta Machinefabriek BV [www.selectamachines.com]</td>
</tr>
</tbody>
</table>

Please note that the above equipment is used by the Millennium Seed Bank and has been chosen carefully using our many years’ experience. The list of suppliers is for guidance only and does not represent an endorsement by the Royal Botanic Gardens, Kew. The manufacturer’s instructions must be followed when using any of the equipment referred to in this Information Sheet.

Further reading

Technical Information Sheet_14

Other techniques for cleaning dry seeds/fruits

Gloved rolling on a rubber mat
Use for collections where sieve and bung is too destructive, such as for seed of Compositae (Asteraceae) and Poaceae. Wearing rubber gloves, gently roll/rub collection across the surface of a rubber mat to remove ‘hairs’ from seeds or break up fruits.

Bag crushing
Good for collections with flat pods and for breaking down spiky material. Also useful for collections where sieve and bung is too rough and gloved rolling is unsuitable. Agitate collection in a cloth bag (wear gloves). Check a sample first to ensure material is robust enough to withstand procedure.

Capsule shaking
Use with Scrophulariaceae, Caryophyllaceae and Crassulaceae collections. Shake capsules to release seeds. Ensure the capsules are completely empty of seed before discarding.

Coating sticky seeds in wood ash
Suitable for sticky and oily collections such as some species of Pittosporaceae. Mix sieved wood ash with collection to absorb oil and stop seeds sticking together. Sieve off any excess ash. The collection can then be aspirated.

Cleaning fleshy fruits

- Mature seeds within fleshy fruits may lose viability rapidly, so these collections should be dealt with immediately.
- Treat all fruits as potentially poisonous. Wear gloves of a suitable thickness.
- Open fruits with a sharp knife or scalpel.
- Scrape out seeds into a sieve with a mesh size small enough to retain the seeds. This operation may be carried out under cool, running water to facilitate seed removal.
- Wash away any mucilage with warm (never hot) water.
- Allow seeds to drain on a nylon mesh or sieve, and then dry slowly under ambient conditions for at least 2 weeks before transferring to a dry room. Make sure that the collection is clearly labelled.
- Do not place wet seeds on paper towels or newspaper as they will be difficult to remove once dry.
- After drying, remove any remaining debris using cleaning procedures for dry seed.

After cleaning

- Label all collections.
- Record how long it took to process the collection and include the final cut-test results (see box overleaf).
- Place the cleaned collection in a dry room or desiccator.
- Clean working areas carefully, to prevent cross-contamination.

Health and Safety

Some collections may be excessively dusty or contain fungal spores. Wear a lab. coat and follow good laboratory practice at all times.

- Grinding, crushing and sieving may release large amounts of dust. Carry out cleaning processes in dust-extraction cabinets or wear a protective mask.
- Treat all seed collections as potentially poisonous. Do not process if you have a known allergy to any materials.
- Clearly label and be aware of any collections with irritant properties. If irritant hairs are found, wear protective gloves and carefully clean any equipment after use.

Above: Delicate, wind-dispersed Asclepias seeds, being cleaned under a dust hood